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Abstract

The idea of Hw-type Suzuki multivalued contraction mapping on weak partial

metric spaces is given by Aydi et al. The inspiration behind this idea came from

the paper of Beg and Pathak. They introduced almost Hausdroff metric space

and generalized Nadler’s fixed point theorem for multivalued mappings on weak

partial metric spaces. Kanwal et al. presented the concept of weak partial b-metric

spaces and the generalization of Nadler’s theorem in the setting of weak partial

Hausdorff b-metric spaces. This dissertation is the inspiration from both papers.

A fixed point theorem using a Suzuki-type multivalued contraction in the context

of weak partial b-metric spaces is discussed. To validate the result an example is

provided.
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Chapter 1

Introduction

1.1 Background

Functional analysis is originated in the early years of twentieth century. In func-

tional analysis, vector spaces and the operators on vector spaces are focused.

Functional analysis is a fusion of abstract linear algebra, modern geometry and

topology. Now a days functional analysis is very vide subject addressing much

of modern analysis. This field deals with the development of vector space and

the other abstract spaces. In the dawn of twentieth century, functional analysis

has made its own direction through integral equation. Although it was started

in solving the differential equations, but it has wide applications to solve many

non-linear problems in mathematics.

One of the most important branch of functional analysis is fixed point theory. It

is a combination of topology, geometry and analysis. Fixed point theorem has

applications in game theory, economics, variational inequalities and many other

scientific fields. The concept of fixed point theory was given by Poincare [1] in

1886. Later on, in 1912 Brouwer [2] has provided the solution of equation Fµ = µ

by proving his fixed point theorem. Brouwer also provided the proofs of fixed point

theorem for the n-dimensional counter parts of sphere and square. Afterwards,

Kakutani [3] extended these results. He proved the existence of fixed point in

1



Introduction 2

Euclidean n-space for a convex compact set.

In 1922 one of the most rudimentary and valuable result was given by Stephen

Banach [4], which is known as Banach Contraction principle. BCP is a very crucial

result because it does not only provides the way to find fixed point, but also it

gives information about the uniqueness of fixed point. Banach proved his result

by stating that a complete metric space U always has a unique fixed point for each

self map F which satisfies

“d(Fu, Fv) ≤ αd(u, v) for all u, v ∈ U and α ∈ [0, 1).”

BCP plays a vital role in solving non-linear problems. The solution of integral and

differential equations can be find by using the technique of BCP.

In fixed point theory, the results are being generalized by using BCP in the fol-

lowing two directions.

1. On a mapping the contraction condition is transmuted.

2. On a mapping the under lying space is transmuted.

Edelstein [5] generalized BCP by considering compact space and taking the con-

stant α = 1. Later, another contractive condition was introduced by Rakotch

[6], in which a monotone decreasing function α(t) is considered and the constant

number α is replaced by this function. Presic [7], Kannan [8], Meir et. al [9]

worked on BCP by altering the contraction condition. Fomin [10] and Gupta [11]

introduced a rational expression and extended Banach contraction principle, later

on this result was extended by Dolhare [12].

Nadler [13] has given a new direction for the research in fixed point theory. He

changed the underlying space into a space which contains the bounded and closed

subsets of a set (M, d). He generalized Banach contraction principle by changing

the single valued contraction mapping to multivalued contraction mapping. This

result opened a new door for many researchers who used this new contraction to

extend many fixed point results see for example [14], [15], [16]. Later on many

authors generated a big revenue in the discipline of fixed point theory by changing

the underlying space such as metric like spaces [17], pseudo-metric spaces [18],

Partial metric spaces [19], quasi b-metric space [20], [21].
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In 1989 Bakhtin [22] presented a new space which is the generalization of metric

space and is known as b-metric space. Later on Czerwick [23] used the idea of

b-metric space and proved some more results that generalize Banach contraction

principle. Afterwards a lot of work has been done in b-matric spaces on multival-

ued as well as on single valued functions such as [24], [25], [26].

Matthews [27] presented the idea of partial metric space in 1992. Which is an-

other generalization of metric space. Matthews used this new space as underlying

space to generalize Banach contraction principle and provided an accurate rela-

tionship between the two spaces that is partial metric spaces and quasi-metric

spaces [28]. Thereafter, in 1995, O’Neill [29] extended the work of Metthews and

introduced the relation between topological aspects of domain theory and partial

metric spaces. He amended Metthews’s range from non-negative real numbers to

the whole real line and this partial metric space was called dualistic partial metric

space. Furthermore Oltra et. al [30] put forward Banach contraction principle by

considering dualistic partial metric spaces with completeness property.

A lot of work is still being done by mathematicians by considering different con-

traction conditions on partial metric spaces for instance [31], [32], [33]. In 1999

a generalized notion of partial metric was introduced by Heckmann [34], which

is named as weak partial metric space. Heckmann amended the contribution of

O’Neill using the range of Matthews, that is nonnegative real numbers.

In [35] Aydi et al. introduced weak partial metric spaces endowed with a Suzuki-

type multivalued contraction. Weak partial metric space is the generalization of

partial metric space. In this dissertation the work of Aydi et al. has been extended

from weak partial metric space to weak partial b-metric space by considering same

contraction mapping. The result has been elaborated with an example.

Organization of the rest of dissertation is given as:

• Chapter 2:

This chapter is divided into six sections. The first three sections provides the

crucial information about metric spaces, b-metric spaces and Partial metric spaces

respectively. Some important fixed point theorems are also provided without the

proof. Fourth section is about the different Mappings on metric space. Fifth
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section gives information about fixed point and related ideas. In the last section

multivalued mappings are discussed.

• Chapter 3:

This chapter is a complete review of the work presented by Aydi et al. [35]. This

chapter provides detailed proof for fixed point result on weak partial metric spaces.

• Chapter 4:

In this chapter the result reviewed in chapter 3 has been extended from weak

partial metric space to weak partial b-metric space. The result of Kanwal et al.

[36] on weak partial b-metric space is used and is being applied by considering a

Suzuki-type multivalued contraction . This result is verified with an example.



Chapter 2

Literature Review

In this chapter we have discussed some basic definitions, lemmas, theorem and

important results from literature. These definitions, lemmas and theorems corre-

sponds to our main result. First section consists of definition of metric space and

its examples. Second section is about b-metric space, examples of b-metric space

and some fixed point results in it. Third section corresponds to partial metric

space and its examples. In fourth and fifth sections fixed point and multivalued

mappings have been discussed.

2.1 Metric Space

This section includes some important results about metric spaces.

Definition 2.1. (Metric Space) [37]

“A metric space is a pair (X, d), where X is a set and d is a metric on X (or

distance function on X), that is , a function defined on X × X such that for all

x, y, z ∈ X we have:

(d1) d is real-valued, finite and nonnegative;

(d2) d(x, y) = 0 if and only if x = y;

5
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(d3) d(x, y) = d(y, x); symmetric property

(d4) d(x, y) ≤ d(x, z) + d(z, y); Triangular inequality

The pair (X, d) is called metric space on X.”

In triangular inequality the word triangle is used due to the property of triangle,

which is shown in the Figure 2.1

Figure 2.1: Triangular inequality in plane.

The structure of metric space is a generalization of the real line. The properties

are defined in such a way so that this structure become analogous to real line. In

real line the distance between two points is defined as

| x− y | .

The metric which is defined in above manner is called the usual metric. Some

nontrivial examples of metric spaces are given below.

Example 2.1.1. [37]

Let S be the set consisting of all defined and continuous real-valued functions

s1, s2, ..., which are functions of an independent real variable u on a given closed

interval I = [a, b]. A mapping d : [a, b]× [a, b] −→ R by

d(s1, s2) = max
u∈I
| s1(u)− s2(u) |,
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is called metric on a space which is denoted by C[a, b].

Since every point of C[a, b] is a function, so it is also called a function space.

Example 2.1.2. Sequence space l∞ [37]

Let X be the set of all complex numbers which are bounded sequences, that is

every element of X is a sequence which is bounded, that is

ξ = (z1, , z2, ....) briefly ξ = (zj)

such that

| zj |≤ cx for all j = 1, 2, ...

where cx is a real number which may depend on x, but is independent of j.

Define the metric on X as,

d(ξ1, ξ2) = sup
i∈N
| zj − yj |

where ξ2 = (yj) ∈ X and N = {1, 2, ...}, and sup stands for supremum (least upper

bound). This space is denoted by l∞.

l∞ is a sequence space because each element of X is a sequence.

Definition 2.1.1. (Open and Closed Ball in Metric Space) [37]

“Let X = (X, d) be a metric space. A point x0 ∈ X and a real number r > 0, we

define open ball as

B(x0; r) = {x ∈ X | d(x, x0) < r},

and closed ball can be defined as

B(x0; r) = {x ∈ X | d(x, x0) ≤ r}.”

Definition 2.1.2. (Open Set) [37]

“A subset M of a metric space X is said to be open if it contains a ball about

each of its point which is contained in M .”

Definition 2.1.3. (Closed Set) [37]

“ A subset K of X is said to be closed if its complement (in X) is open, that is,
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Kc = X −K is open.”

Definition 2.1.4. (Bounded Set) [38]

“A set G ⊆ Y is bounded in (Y, d) if there exist y ∈ Y and M > 0 such that

G ⊆ Bd(y,M).”

Definition 2.1.5. (Convergence of a sequence) [39]

“A sequence (pn) in a metric space X is said to converge if there is a point p ∈ X

with following property:

for every ε > 0 there is an integer N such that n ≥ N implies that

d(pn, p) < ε.

This can also be written as

lim
n→∞

d(pn, p) = 0,

or

lim
n→∞

pn = p

We say that (pn) converges to p or has the limit p. If (pn) is not convergent, it is

said to be divergent.”

Example 2.1.3. [39]

• Let M = R, with metric d defined as

d(x1, x2) =| x1 − x2 |,

then xn =

(
1

n

)
is convergent sequence. Since

lim
n→∞

d

(
1

n
, 0

)
= 0,

that is
1

n
→ 0.

• Let M = R, with metric d defined as

d(x1, x2) =| x1 − x2 |,
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then xn = n2 is a divergent sequence.

Definition 2.1.6. (Cauchy Sequence) [37]

“A sequence {xn} in a metric space X is said to be Cauchy, if for every ε > 0

there exist a positive integer N such that,

d(xm, xn) < ε for every m,n > N.”

Theorem 2.1.1. [37]

“Every convergent sequence in metric space is a Cauchy sequence.

Proof.

Let (X, d) be a metric space and xn be a sequence in X.

Let xn → x, then for every ε > 0, there exist a number N ∈ N such that

d(xn, x) < ε for all n > N.

{xn} is a Cauchy sequence, by choosing m,n ∈ N with m > n, we have

d(xm, x) <
ε

2
, and d(xn, x) <

ε

2
.

Now consider,

d(xm, xn) ≤ d(xm, x) + d(xn, x) for all m,n > N

<
ε

2
+
ε

2
= ε

⇒ d(xm, xn) < ε for all m,n > N

Hence {xn} is a Cauchy sequence.”

Remark 2.1.1. [37]

“If X = R, then every Cauchy sequence is convergent but this is not the case in
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general.

Cauchy criterion says that a sequence of real or complex numbers converges on R

or in C if and only if it is a Cauchy sequence. This is the situation for R and C.

But in more general spaces there can be Cauchy sequence which do not converge.

In such situation there is lack of the property which is so important so that it

deserves a name, called completeness. This consideration leads to the following

definition, which was first given by M. Frechet (1906).”

Definition 2.1.7. (Complete metric space) [37]

“A metric space (X, d) is said to be complete, if every Cauchy sequence in X has

a limit point in X.”

Example 2.1.4.

1. Every finite dimensional metric space is complete.

2. The space of continuous functions C[a, b] is a complete metric space.

3. Closed subset of a complete metric space is complete.

2.2 b-Metric Space

The concept of metric space was generalized by Bakhtin [22] and thereafter Cz-

erwick [23] used this idea and has given the concept of b-metric space. It the

generalizes the metric space. The contraction mapping principle in b-metric space

was proved by Czerwick that generalized the Banach contraction principle [40].

Definition 2.2.1. (b-Metric Space) [41]

“Let X 6= φ be a set and k ∈ R such that k ≥ 1. Consider a function d : U×U −→

[0,∞). The pair (X, d) is called b-metric space if the following conditions are

satisfied for all x, y, z ∈ X

(b1) d(x, y) = 0 if and only if x = y,
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(b2) d(x, y) = d(y, x),

(b3) d(x, y) ≤ k(d(x, z) + d(z, y)).”

Example 2.2.1. [42]

Let S = [0, 2] and d : S × S −→ [0,∞) be defined by

d(s, t) =


(s− t)2, s, t ∈ [0, 1],

| 1

s2
− 1

t2
|, s, t ∈ [1, 2],

| s− t |, otherwise.

It can easily seen that d is a b-metric on S with k = 2.

Example 2.2.2. [43]

Let

`p(R) =

{
(un) ⊂ R :

∞∑
n=1

|un|p <∞

}
, 0 < p < 1

together with a functional

d : `p(R)× `p(R) −→ R,

defined by

d(u, v) = (
∞∑
n=1

|un − vn|p)
1
p ,

where u = un and v = vn are sequences in `p(R), one can easily verify that

(`p(R), d) is a b-metric space with coefficient k = 2
1
p > 1.

Definition 2.2.2. (b-Cauchy Sequence)[44]

“Let (X, d) be a b-metric space. Then a sequence (xn) in X is called Cauchy

sequence if and only if for all ε > 0 there exist n(ε) ∈ N such that for each

m,n > n(ε) we have

d(xm, xn) < ε.”

Definition 2.2.3. (b-Convergent Sequence) [14]

“Let (X, d) be a b-metric space. Then a sequence (xn) in X is called convergent

sequence if and only if there exist x ∈ X such that for all ε > 0 there exist n(ε) ∈ N
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such that for all n > n(ε) we have

d(xn, x) < ε,

in this case we write limn→∝ xn = x.”

Definition 2.2.4. (Complete b-metric Space) [14]

“A b-metric space is said to be complete if every Cauchy sequence is convergent

in it.”

2.3 Partial Metric Space

The concept of partial metric was given by Matthews [27] in 1992. The inspiration

behind the concept of partial metric space comes from the decipline of computer

science. The computer scientists were curious that how an infinite sequence can be

computed. They divided an infinite sequence into finite parts and observed that

there were many sequences that have non-zero self distances. In this way each

finite sequence is actually the partially computed version of an infinite sequence

which is totally computed. Partial metric space is the generalization of metric

space [45].

Definition 2.3.1. (Partial metric space) [35]

“A partial metric on a nonempty setX is a function p : X×X −→ R+ (nonnegative

reals) such that for all x, y, z ∈ X:

(p1) x = y ⇔ p(x, x) = p(x, y) = s(y, y),

(p2) p(x, x) ≤ p(x, y),

(p3) p(x, y) = p(y, x),

(p4) p(x, z) ≤ p(x, y) + p(y, z)− s(y, y)

The pair (X, p) is called a partial metric space.”
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Note 2.3.1.

Partial metric space is the generalization of metric space. In PMS the condition

d(x, x) = 0 is replaced by d(x, x) ≤ d(x, y). That is in PMS self distances are

non-zero while in metric spaces self distances are zero.

Example 2.3.1. [46]

Let W be the collection of all closed interval [a, b] in R, where a < b. Let

p : W ×W → R+

be the mapping defined

p([a, b], [c, d]) = max{b, d} −min{a, c}.

Then (W, p) is a partial metric space.

Definition 2.3.2. (Cauchy Sequence) [45]

“A sequence x = (xn) of points in a partial metric space (X, p) is Cauchy if there

exists an a ≥ 0 such that for each ε > 0, there exists k such that for all n,m > k,

| p(xn, xm)− a |< ε.

In other words, x is Cauchy if p(xn, xm) converges to some a as n and m approach

infinity, that is, if

lim
n,m→∞

p(xn, xm) = a.”

Definition 2.3.3. (Convergent Sequence) [45]

“A sequence x = (xn) of points in a partial metric space (X, p) converges to y in

X if

lim
n→∞

p(xn, y) = lim
n→∞

p(xn, xn) = p(y, y).

Thus if a sequence converges to a point then the self-distances converge to the

self-distance of that point.”

Definition 2.3.4. (Completeness) [45]

“A partial metric space (X, p) is said to be complete if every Cauchy sequence
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converges.”

2.4 Mappings on Metric Space

Definition 2.4.1. (Continuous mapping) [37]

“Let T : X → Y be a mapping between two metric spaces, T is said to be

continuous if for every xn ⊂ X, we have

xn → x0 ∈ X ⇒ T (xn)→ T (x0)

Alternatively we can say that, a mapping T : X → Y of a metric space (X, d1)

into a metric space (Y, d2) is continuous at a point a0 ∈ X if for every ε > 0, there

exists a δ > 0, such that

d(Tan, Ta0) <∈ whenever d(an, a0) < δ.”

Definition 2.4.2. (Lipschitzian mapping) [47]

“Let (X, d) be a metric space. A mapping F : X → X is said to be Lipschitzian

if there exist a constant α > 0 such that

d(F (x), F (y)) ≤ αd(x, y)

for all x, y ∈ X.The smallest number k for which above inequality is true is called

Lipschitzian constant.”

Example 2.4.1.

Let X be the set of all column vectors in R2, and let (X, d) metric space, where d

is defined as

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2.

Consider a mapping F : X −→ X defined by F (u) = Au, where u ∈ X.

A =

2 0

0 2

, u =

x1
y1

 and v =

x2
y2

.
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F (u) =

2 0

0 2

x1
y1


=

2x1

2y1


= 2

x1
y1


= 2u

d(Fu, Fv) = d(2u, 2v)

=
√

(2x1 − 2y1)2 − (2x2 − 2y2)2

= 2d(u, v)

Hence, F is a Lipschitzian mapping.

Definition 2.4.3. (Contraction) [47]

“Let (X, d) be a metric space. A mappping F : X → X is said to be contraction

if there exists a constant k ∈ [0, 1) such that for all x, y ∈ X

d(F (x), F (y)) ≤ kd(x, y)

where k is called contraction constant.”

Example 2.4.2.

Let (M, d) be the usual metric space, where M = [0, 1]. Define G :M→M by

G(x) =
1

c+ x
with (c > 1)

then,

d(G(x1), G(x2)) = d(
1

c+ x1
,

1

c+ x2
)

=| 1

c+ x1
− 1

c+ x2
|

=| (c+ x2)− (c+ x1)

(c+ x1)(c+ x2)
|
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=| x2 − x1
(c+ x1)(c+ x2)

|

=| x1 − x2 |
1

| (c+ x1)(c+ x2) |

<| x1 − x2 |
1

| (c+ 0)(c+ 0) |

=
1

c2
| x1 − x2 |

= kd(x1, x2), where k =
1

c2

⇒ d(G(x1), G(x2)) < kd(x1, x2)

Definition 2.4.4. (Contractive mapping) [47]

“Let (X, d) be a metric space and G be a self map, G is called contractive mapping

if, for all x, y ∈ X

d(G(x), G(y)) < d(x, y), where x 6= y.”

Example 2.4.3.

Let (M, d) be the usual metric space, where M = R. And G :M→M by

G(ν) =
1

ν
where ν > 1

d(G(ν1), G(ν2)) = d(
1

ν1
,

1

ν2
)

=| 1

ν1
− 1

ν2
|

=| ν2 − ν1
ν1ν2

|

=| ν1 − ν2
ν1ν2

|

=| ν1 − ν2 ||
1

ν1ν2
|

<| ν1 − ν2 |

= d(ν1, ν2),
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⇒ d(G(ν1), G(ν2)) < d(ν1, ν2)

2.5 Fixed Point and Related Ideas

The initiation of fixed point theory belongs to Poincare who has given its concept

in nineteenth century. Later on it was used by L. Brouwer who has given his

classical result of fixed point theory that is known as “Brouwer’s Fixed Point

Theorem” in 1912. A fixed point for a function T can be defined as an element

taken from the domain of a function and is mapped to itself by the function.

Furthermore, let S and T be the two nonempty subsets of a metric space (M, d)

and

F : S −→ T

be a mapping. For a fixed to be exist it is mandatory that

F(S) ∩ S 6= φ.

If above result does not hold, then d(u, Tu) 6= 0 that is

d(u, Tu) > 0

for each t ∈ S.

Definition 2.5.1. (Fixed Point) [48]

“Let T be a self mapping on a set X. An element u in X is said to be a fixed

point of mapping T if,

Tu = u,

The set of all points fixed points of T is denoted by Fix(T).”

Geometrically, let y = f(x) be the real valued function then fixed points are the

point of intersection of y = f(x) and y = x, if the straight line does not intersect

the curve then there is no fixed point. The intersection can be seen in the following

diagram,
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Figure 2.2: One Fixed Point.

Figure 2.3: No Fixed Point.

Figure 2.4: Infinite Fixed Point.

In 1922, a Polish mathematician Stefan Banach [4] has given a valuable result

to fixed point theory, which is later on known as Banach Contraction Principle

(BCP). It has wide applications in nonlinear problems of integral and differential

equations to check the existence of solution. In computational mathematics it is

used to find the proof of convergence of algorithms.

Theorem 2.5.1. [37]

“Consider a metric space X = (X, d), where X 6= φ. Suppose that X is complete

and T : X −→ X be a contraction on X. Then T has precisely one fixed point.”
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2.6 Multivalued Mapping

Multivalued mapping has a very important role in pure and applied mathematics

because of a wide range of applications in real analysis, complex analysis and in

optimal control problems [16]. Multivalued function has the same behavior as

that of a function. But there could be more than one association of an element of

domain X in codomain Y .

Definition 2.6.1. (Multivalued Mapping) [15]

“Let X and Y be the two nonempty sets. T is said to be multivalued mapping from

X to 2Y if T is a relation of X to the power set of Y . We denote the multi-valued

map by

T : X → 2Y .

That is T is multivalued mapping if and only if for each x ∈ X,Tx ⊆ Y . Unless

otherwise stated we always assume Tx is non-empty set for each x ∈ X.”

Example 2.6.1.

Let S = {l,m, n, o} and T = {1, 1.3, 2, 2.3, ..........., 10}. Define a mapping

F : S → 2T ,

F is called multivalued or set valued mapping by

F (l) = {1, 2, 2.3, 3} F (m) = {1.3, 3, 4.3, 5.3},

F (n) = {4, 5, 6} F (o) = {7.3, 8, 9.3, 10},

then F is called a multivalued map.

Remark 2.6.1.

We can see in the above example that F : S → F (T ) is not a function, as in set

T there are multiple images of one element of set S.

Example 2.6.2.

Let X = (−∞, 1] and define a mapping T : X −→ 2R by,
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Tx = 1 +
√

1− x

is a multivalued mapping which can be seen in the following graph.

Figure 2.5: Multivalued map.

Definition 2.6.2. (Hausdroff Metric Space) [49]

“Let (X, d) be a metric space and CB(X) denotes the collection of all nonempty

closed and bounded subsets of X. For A,B ∈ CB(X), define

H(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
,

where d(x,A) = inf{d(x, a) : a ∈ A} is the distance of a point to the set A. It is

known that H is a metric on CB(X), called the Hausdorff metric induced by the

metric d.”

Example 2.6.3.

Let G = {1, 2, 3, ...., 8}, consider two subsets of G as S = {1, 4}, T = {5, 8}.

H(S, T ) = max

{
sup
s∈S

d(s, T ), sup
t∈T

d(t, S)

}
(2.1)
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Now, to find H(S, T ) we proceed as follows

sup
s∈S

d(s, T ) = sup
s∈S
{4, 1}

⇒ sup
s∈S

d(s, T ) = 4 (2.2)

Also,

sup
t∈T

d(t, S) = sup
t∈T
{1, 4} (2.3)

⇒ sup
t∈T

d(t, S) = 4

From (1.2) and (1.3) using values in (1.1), we have

H(S, T ) = max{4, 4}

H(S, T ) = 4

Nadler extended the Banach fixed point theorem for a contraction from a complete

metric space into the space of all nonempty closed and bounded subsets of X. He

has given the concept of multivalued contractive mappings and proved Banach

fixed point theorem for multivalued mappings in complete metric space [50].

Theorem 2.6.1. (Nadler’s Theorem) [50]

“Let (X, d) be a complete metric space and T : X −→ CB(X) be such that

H(Tx, Ty) ≤ k0d(x, y), for all x, y ∈ X, and some k0 ∈ [0, 1[, where CB(x)

denotes the family of all nonempty closed and bounded subsets of X. Then Fix(T )

is nonempty, that is, there exist x ∈ X such that x ∈ Tx.”



Chapter 3

A Fixed Point Result using a

Suzuki-type Multivalued

Contraction on WPMS

This chapter is the review of the paper of Aydi et al. [35] which addresses a Suzuki-

type multivalued contraction on weak partial metric spaces and its applications

based on the research work of Beg and Pathak [51]. Beg and Pathak introduced

almost partial Hausdroff metric and generalized Nadler’s fixed point theorem for

multivalued mappings on weak partial metric spaces.

3.1 Basic Definitions

Heckmann introduced the concept of WPMS in 1999. He gave this concept by

dropping the nonzero small self distance, which is first axiom of partial metric

space [34].

Definition 3.1.1. (Weak Partial Metric Space) [35]

LetM 6= φ be a set andW :M×M→ R+ be a function, then for all %1, %2, %3 ∈

M,

22
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(W1) W(%1, %1) =W(%1, %2) if and only if %1 = %2;

(W2) W(%1, %1) ≤ W(%1, %2);

(W3) W(%1, %2) =W(%2, %1);

(W4) W(%1, %2) ≤ W(%1, %3) +W(%3, %2),

then W is called weak partial metric on M. The pair (M,W) is called a weak

partial metric space.

Example 3.1.1. [51]

Consider the set R+ of all non-negative real numbers. Define a mapping

W : R+ × R+ → R+

by

W(%1, %2) =
1

4
|%1 − %2|+ max{%1, %2} for %1, %2 ∈ R+,

then (R+,W) is a weak partial metric space.

We can show that R+ is a weak partial metric space as follows;

(W1) :

Let W(%1, %1) =W(%1, %2)

⇒ max{%1, %1} =
1

4
|%1 − %2|+ max{%1, %2}

Case 1: If max{%1, %2} = %1, then

%1 =
1

4
|%1 − %2|+ %1

⇒ %1 = %2

Case 2: If max{%1, %2} = %2, then

%1 =
1

4
|%1 − %2|+ %2
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%1 − %2 =
1

4
|%1 − %2|

⇒ 4(%1 − %2) = |%1 − %2|.

Which is contradiction, so %1 = %2.

Conversely let

%1 = %2,

consider

W(%1, %2) =
1

4
|%1 − %2|+ max{%1, %2}

=
1

4
|%1 − %1|+ max{%1, %1}

= max{%1, %1}

= %1

=W(%1, %1)

⇒W(%1, %2) =W(%1, %1)

(W2) :

W(%1, %1) =
1

4
|%1 − %1|+ max{%1, %1}

= %1

≤ 1

4
|%1 − %2|+ max{%1, %2}

=W(%1, %2)

⇒W(%1, %1) ≤ W(%1, %2)

(W3) : To prove (W3) we proceed as follows

W(%1, %2) =
1

4
|%1 − %2|+ max{%1, %2}

=
1

4
|%2 − %1|+ max{%2, %1}
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=W(%2, %1)

⇒W(%1, %2) =W(%2, %1)

(W4) :

W(%1, %2) =
1

4
|%1 − %2|+ max{%1, %2}

=
1

4
|%1 − %3 + %3 − %2|+ max{%1, %2}

≤ 1

4
|%1 − %3 | +

1

4
| %3 − %2|+ max{%1, %2}

≤ 1

4
|%1 − %3 | +

1

4
| %2 − %3|+ max{%1, %2}

+ max{%2, %3}+ max{%1, %3}

=W(%1, %3) +W(%2, %3)

⇒W(%1, %2) ≤ W(%1, %3) +W(%2, %3)

Since all the conditions are satisfied, so (R+,W) is a weak partial metric

space.

Remark 3.1.1.

One can easily observe that

(i) IfW(%1, %2) = 0, then (W1) and (W2) imply that %1 = %2 , but the converse

may not need to be true since self distance is non-zero in weak partial metric

space.

(ii) First property of partial metric space refers to first property of weak partial

metric space that is first property is same for both of partial metric space

and weak partial metric space. But the converse may need to be true.

(iii) Also fourth property of partial metric space refers to fourth property of weak

partial metric space. But the converse not need to be true.

Remark 3.1.2.

Every weak partial metricW onM produces a Hausdroff topology τw onM. The

family of open w-balls {Bw(µ, ε) : µ ∈ M, ε > 0} gives rise to the base of this
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topology.

Furthermore the open w-ball can be defined as

Bw(µ, ε) = {ν ∈M :W(µ, ν) <W(µ, µ) + ε} for all µ ∈M and ε > 0.

In order to define a metric onM, for W to be a weak partial metric space onM,

define a function Ws :M×M→ [0,∞) by

Ws(µ, ν) =W(µ, ν)− 1

2
[W(µ, µ) +W(ν, ν)]

Definition 3.1.2. (Convergent Sequence) [52]

Let (M,W) be a weak partial metric spaces. A sequence {un} in (M,W) will

converge to a point u ∈M, with respect to τw if

W(u, u) = lim
n→∞

W(u, un).

Definition 3.1.3. (Cauchy Sequence)

Let {un} ∈ M be a sequence in a weak partial metric space (M,W). {un} will

be a Cauchy sequence if limn,m→∞W(un, um) exists and is finite.

Definition 3.1.4. (Completeness)

Let (M,W) be a weak partial metric space. It is will be complete if every Cauchy

sequence {un} in M converges to a point u ∈M with respect to topology τw.

3.2 Fixed Point Results on Weak Partial Metric

Spaces

In this section we have discussed some fixed point results on weak partial metric

space with respect to the metric defined in weak partial metric spaces.

Lemma 3.2.1. [35]

Let (M,W) be a weak partial metric space, and {un} be a sequence in M,
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(a) then the sequence {un} is Cauchy sequence in (M,W) if and only if this

sequence is Cauchy in the metric space (M,Ws),

(b) the weak partial metric space (M,W) is complete if and only if the metric

space (M,Ws) is complete and vice versa,

(c) a sequence {un} converge to a point u ∈M if and only if,

lim
n,m→∞

W(un, um) = lim
n→∞

W(un, u) =W(u, u).

Definition 3.2.1. (Distance between two sets)

Let (M,W) be a weak partial metric space and CBw(M) consists of the family

of all bounded and closed subsets ofM. One can define the distance between two

sets as

ψw(S, T ) = sup{W(s, T ) : s ∈ A}, (3.1)

where

W(s, T ) = inf{W(s, t), t ∈ T}

is the distance between a set and a point.

It is worth mentioning that if W(s, T ) = 0, then we have

Ws(s, T ) = inf{Ws(s, t), t ∈ T}.

Proposition 3.2.2. [51]

Let (M,W) be a weak partial metric space, and let S be a nonempty set in

(M,W), then s ∈ S̄ if and only if

W(s, S) =W(s, s),

where S̄ is the closure of S with respect to weak partial metric space W . If S is

closed then S̄ = S.

Proof.

Let y ∈ S and s ∈ S̄ then for each ε > 0
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Bw(s, ε) ∩ S 6= ∅ for all ε > 0

⇔W(s, y) < ε+W(s, s) for all ε > 0 and some y ∈ S

⇔W(s, y)−W(s, s) < ε

⇔ inf{W(s, y)−W(s, s) : y ∈ S} = 0

⇔ inf{W(s, y) : y ∈ S} −W(s, s) = 0

⇔ inf{W(s, y) : y ∈ S} =W(s, s)

⇔W(s, S) =W(s, s)

In upcoming discussion the concept of weak partial metric space on the family

of bounded and closed subset of M is discussed. The mapping ψw : CBw(M) ×

CBw(M)→ [0,∞) is defined in equation (3.1).

Proposition 3.2.3. [51]

Let (M,W) be weak partial metric space, then for all S, T, U ∈ CBw(M)

(i) ψw(S, S) = sup{W(s, s) : s ∈ S},

(ii) ψw(S, S) ≤ ψw(S, T ),

(iii) ψw(S, T ) = 0 implies S ⊆ T ,

(iv) ψw(S, T ) ≤ ψw(S, U) + ψw(U, T ).

Proof.

(i) Let S ∈ CBw(M), then for all s ∈ S, we have W(s, S) =W(s, s) as S̄ = S.

Therefore ψw(S, S) = sup{W(s, S) : s ∈ S} = sup{W(s, s) : s ∈ S}

(ii) Let s ∈ S,

since,
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W(s, s) ≤ W(s, t) for all t ∈ T,

therefore we have,

W(s, s) ≤ W(s, T ) ≤ ψw(S, T ).

From (i) it is clear that,

ψw(S, S) = sup{W(s, s) : s ∈ S} ≤ ψw(S, T ),

so,

ψw(S, S) ≤ ψw(S, T ).

(iii) Let ψw(S, T ) = 0,

consequently,

W(s, T ) = 0 for all s ∈ S,

from (i) and (ii) we have,

W(s, s) ≤ ψw(S, T ) = 0 for all s ∈ S.

That is,

W(s, s) = 0 for all s ∈ S,

so we have,

W(s, T ) =W(s, s) for all s ∈ S.

Now, using remark (3.1) we have,

s ∈ T̄ = T whenever s ∈ S,

hence,

S ⊆ T.

(iv) Let s ∈ S, t ∈ T and u ∈ U.
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Since,

W(s, t) ≤ W(s, u) +W(u, t),

so we have,

W(s, T ) ≤ W(s, u) +W(u, T ),

as,

W(s, t) ≤ ψw(S, T ),

so,

W(s, T ) ≤ W(s, u) + ψw(U, T ).

As u is an arbitrary element of U ,

therefore,

W(s, T ) ≤ W(s, U) + ψw(U, T ),

furthermore, s is also an arbitrary element, so we have

ψw(S, T ) ≤ ψw(S, U) + ψw(U, T ).

Definition 3.2.2.

Let (M,W) be a weak partial metric space. For S, T ∈ CBw(M), define a

mapping Hw : CBw(M)× CBw(M) −→ [0,∞) by

Hw(S, T ) =
1

2
{ψw(S, T ) + ψw(T, S)},

is called Hw - type Pompeiu-Hausdorff metric space induced by W .

Proposition 3.2.4. [51]

Let (M,W) be a weak partial metric space. Then, for all S, T, U ∈ CBw(M), we

have

(1) Hw(S, S) ≤ Hw(S, T );

(2) Hw(S, T ) = Hw(T, S);
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(3) Hw(S, T ) ≤ Hw(S, U) +Hw(U, T ).

Definition 3.2.3. (Multivalued Contraction)

Let (M,W) be a weak partial metric space and F : M −→ CBw(M) be a

multi-valued mapping. This mapping is said to be Hw - contraction if

(i) there exists k in (0, 1) such that

Hw(Fx \ {x},Fy \ {y}) ≤ k(x, y) for every x, y ∈M,

(ii) for all x in M, y in Fx, and ε > 0, there exist z in Fy such that

W(y, z) ≤ Hw(Fy,Fx) + ε.

3.3 Fixed Point Result on WPMS

The following fixed point theorem is taken from Beg and Pathak [51]. Aydi et al.

[35] generalized this result on Suzuki-type multivalued contraction on weak partial

metric spaces.

Theorem 3.3.1.

Let (M,W) be a complete weak partial metric space, let T : M −→ CBw(M)

be a Hw−type multivalued contraction mapping. This mapping has a fixed point

with Lipschitz constant k < 1.

To achieve the task of generalization of Theorem (4.1) on Hw - type Suzuki multi-

valued contraction on weak partial metric spaces the following mapping is required,

which is defined as ζ : [0, 1) −→ (0, 1] is given by

ζ(r) =


1, if 0 ≤ r <

1

2

1− r, if
1

2
≤ r < 1.

(3.2)
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Theorem 3.3.2.

Let (M,W) be a complete weak partial metric space, and let T :M−→ CBw(M)

be a multivalued mapping. Consider ζ : [0, 1) −→ (0, 1] as a nonincreasing function

which is defined as in (3.2).

Further assume that for α ∈ [0, 1), T satisfies the following

ζ(α)W(u1, Tu1) ≤ W(u1, u2)⇒ Hw(Tu1 \ {u1}, Tu2 \ {u2}) ≤ αW(u1, u2) (3.3)

for all u1, u2 ∈M. Suppose also that, for all u1 in M, and u2 in Tu1, and β > 1,

there exist u3 in Tu2 such that

W(u2, u3) ≤ βHw(Tu2, Tu3), (3.4)

then there is a fixed point of T .

Proof.

Let α1 ∈ (0, 1) be such that 0 ≤ α ≤ α1 < 1 and v0 ∈M.

Since Tv0 is nonempty, it is clear that if v0 ∈ Tv0, then there is nothing to prove,

as T has a fixed point.

Let v0 6∈ Tv0.

Then there exists v1 ∈ Tv0, such that v1 6= v0.

Further for v1 6∈ Tv1, there exist v2 ∈ Tv1, such that v2 6= v1.

As

0 ≤ α ≤ α1 < 1,

so
1
√
α1

> 1,

now using the condition assumed in (3.4), that is

W(v1, v2) ≤
1
√
α1

Hw(Tv0, T v1), (3.5)

since,

ζ(r)W(v1, T v1) ≤ W(v1, T v1) and W(v1, T v1) ≤ W(v1, v2),
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so,

ζ(r)W(v1, T v1) ≤ W(v1, T v1) ≤ W(v1, v2),

⇒ ζ(r)W(v1, T v1) ≤ W(v1, v2),

now from equation (3.3) it follows that,

Hw(Tv0 \ {v0}, T v1 \ {v1}) ≤ αW(v1, v2),

and from equation (3.4),

W(v1, v2) ≤
1
√
α1

Hw(Tv0, T v1),

ultimately,

W(v1, v2) ≤
1
√
α1

Hw(Tv0, T v1) ≤
1
√
α1

Hw(Tv0 \ {v0}, T v1 \ {v1})

≤ 1
√
α1

.α.W(v0, v1) ≤
√
α1.W(v0, v1).

Furthermore,

W(v2, v3) ≤
1
√
α1

Hw(Tv1, T v2) ≤
1
√
α1

Hw(Tv1 \ {v1}, T v2 \ {v2})

≤ 1
√
α1

.α.W(v1, v2) ≤
√
α1.W(v1, v2)

≤
√
α1 [
√
α1.W(v0, v1)]

⇒W(v2, v3) ≤ (
√
α1)

2.W(v0, v1),

continuing in this way n times,

W(vn, vn+1) ≤
1
√
α1

Hw(Tvn−1, T vn)

≤ 1
√
α1

Hw(Tvn−1 \ {vn−1}, T vn \ {vn})
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≤ 1
√
α1

Hw(Tvn−1 \ {vn−1}, T vn \ {vn})

≤ 1
√
α1

.α.W(vn−1, vn) ≤
√
α1.W(vn−1, vn)

≤
√
α1

[
(
√
α1)

n−1.W(v0, v1)
]

≤ (
√
α1)

n.W(v0, v1)

⇒W(vn, vn+1) ≤ (
√
α1)

n.W(v0, v1). (3.6)

Hence,

lim
n→∞

W(vn, vn+1) = 0 (3.7)

Now it is to be proved that {vn} is a Cauchy sequence in (M,Ws). For all m ∈ N ,

where m > n,

Ws(vn, vn+m) =W(vn, vn+m)− 1

2
[W(vn, vn) +W(vn+m, vn+m)]

≤ W(vn, vn+m)

≤ W(vn, vn+1) +W(vn+1, vn+m)

≤ W(vn, vn+1) +W(vn+1, vn+2)

+W(vn+2, vn+m)

≤ W(vn, vn+1) +W(vn+1, vn+2)

+W(vn+2, vn+3) + ...+W(vn+m−1, vn+m)

≤ [(
√
α1)

n + (
√
α1)

n+1) + (
√
α1)

n+2) + ...

+ (
√
α1)

n+m−1)]W(v0, v1)

≤ [(
√
α1)

n + (
√
α1)

n+1) + (
√
α1)

n+2) + ...

+ (
√
α1)

n+m−1) + (
√
α1)

n+m−2) + ...]W(v0, v1)

≤ (
√
α1)

n 1

1−√α1

W(v0, v1).

lim
n→∞

Ws(vn, vn+m) = 0. (3.8)
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Hence it is clear that {vn} is a Cauchy sequence in (M,Ws). So there exists a

p ∈M such that

lim
n→∞

W(vn, p) = lim
n,m→∞

W(vn, vm) =W(p, p). (3.9)

The second property of weak partial metric space gives

W(vn, vn) ≤ W(vn, vn+1) and W(vn+1, vn+1) 6W(vn, vn+1)

⇒ 1

2
[W(vn, vn) +W(vn+1, vn+1)] ≤ W(vn, vn+1). (3.10)

lim
n→∞

W(vn, vn) = lim
n→∞

W(vn+1, vn+1) = lim
n→∞

W(vn, vn+1) = 0, (from (3.7))

(3.11)

since,

lim
n→∞

Ws(vn, vn+m) = lim
n→∞

W(vn, vn+m)− 1

2
lim
n→∞

[W(vn, vn) +W(vn+m, vn+m)].

But from (3.8)

lim
n→∞

Ws(vn, vn+m) = 0,

using values from (3.11),

⇒ lim
n→∞

Ws(vn, vn+m) = 0 = lim
n→∞

W(vn, vn+m). (3.12)

Hence,

lim
n→∞

W(vn, vn+m) = 0 = lim
n→∞

W(vn, p) = lim
n→∞

W(p, p). (3.13)

Now, it is to be proved that

W(p, Tu1) ≤ 2αW(p, u1) for all u1 ∈M \ {p} (3.14)

As

lim
n→∞

W(vn, p) = 0,

therefore, there exists N ∈ N such that
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W(vn, p) ≤
1

3
W(u1, p) for all n ≥ N. (3.15)

Now, from the assumption

ζ(α)W(vn, T vn) ≤ W(vn, T vn)

≤ W(vn, vn+1)

≤ W(vn, p) +W(p, vn+1)

≤ 1

3
W(p, u1) +

1

3
W(p, u1)

≤ W(u1, p)−
1

3
W(u1, p)

≤ W(u1, p)−W(p, vn) (from (3.15))

W(p, u1) ≤ W(p, vn) +W(vn, u1) (by triangular inequality)

=W(p, vn) +W(u1, vn)

⇒W(p, u1)−W(p, vn) ≤ W(u1, vn)

⇒ ζ(α)W(vn, T vn) ≤ W(u1, vn)

⇒ Hw(Tvn, Tu1) ≤ αW(vn, u1). (3.16)

Since,

Hw(Tvn, Tu1) =
1

2
{ψw(Tvn, Tu1) + ψw(Tu1, T vn)}

⇒ 2Hw(Tvn, Tu1) = ψw(Tvn, Tu1) + ψw(Tu1, T vn)

⇒ 2Hw(Tvn, Tu1) ≥ ψw(Tvn, Tu1), (3.17)

Since vn+1 ∈ Tvn, now using the definition of distance between two sets and the

distance between a set and a point,

W(vn+1, Tu1) ≤ ψw(Tvn, Tu1)

W(vn+1, Tu1) ≤ 2Hw(Tvn, Tu1) (from (3.17))

W(vn+1, Tu1) ≤ 2αW(vn, u1) (from (3.16))

W(vn+1, Tu1) ≤ 2α{W(vn, p) +W(p, u1)}
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⇒ lim
n→∞

W(vn+1, Tu1) ≤ 2αW(p, u1).

Consider,

W(p, Tu1) ≤ W(p, vn+1) +W(vn+1, Tu1)

W(p, Tu1) ≤ lim
n→∞

W(vn+1, Tu1) (3.18)

and also,

W(vn+1, Tu1) ≤ W(vn+1, vn) +W(vn, p) +W(p, Tu1)

⇒ lim
n→∞

W(vn+1, Tu1) ≤ W(p, Tu1) (3.19)

⇒ lim
n→∞

W(vn+1, Tu1) =W(p, Tu1) (from (3.18) and (3.19))

⇒W(p, Tu1) ≤ 2αW(p, u1) for all u1 ∈M \ {p}. (3.20)

Now claim that,

Hw(Tu1, Tp) ≤ αW(p, u1) for all u1 ∈ W .

Above statement clearly hold for u1 = p.

Assume that u1 6= p, then for every m ∈ N, there will be a zm ∈ Tu1 such that

W(p, zm) ≤ W(p, Tu1) +
1

m
W(p, u1). (3.21)

Now consider,

W(u1, Tu1) ≤ W(u1, zm)

≤ W(u1, p) +W(p, zm)

≤ W(u1, p) +W(p, Tu1) +
1

m
W(u1, p) (from (3.21)) (3.22)

W(u1, Tu1) ≤ W(u1, p) + 2αW(p, u1) +
1

m
W(u1, p) (from (3.20) and (3.22))

=

[
1 + 2α +

1

m

]
W(u1, p).
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⇒ 1[
1 + 2α +

1

m

]W(u1, Tu1) ≤ W(p, u1).

The above inequality implies that

Hw(Tu1, Tp) ≤ αW(p, u1) for all u1 ∈ W . (3.23)

Now the existence of fixed point will be shown.

Consider

W(p, Tp) = lim
n→∞

W(vn+1, Tp)

≤ lim
n→∞

ψw(Tvn, Tp)

≤ 2 lim
n→∞

Hw(Tvn, Tp)

≤ 2α lim
n→∞

W(vn, p) = 0.

From above calculation it is clear that W(p, Tp) = 0 =W(p, Tp).

Since Tp is closed, p ∈ Tp = Tp.

Example 3.3.1. [35]

LetM =
{

0,
1

2
, 1
}

. The weak partial metric spaceW :M×M−→ [0,∞) can be

defined as W(0, 0) = 0,W
(

1

2
,
1

2

)
=

1

3
,W(1, 1) =

1

4
,W

(
0,

1

2

)
= W

(
1

2
, 0

)
=

1

2
,W

(
1

2
, 1

)
=W

(
1,

1

2

)
=

3

4
and W(1, 0) =W(0, 1) = 1.

It can easily be seen that (M,W) is weak partial metric space but is not a partial

metric space.

Since

W(1, 0) = 1 �W
(

1

2
, 1

)
+W

(
1

2
, 0

)
−W

(
1

2
,
1

2

)
=

3

4
+

1

2
− 1

3
= 0.9

Let T : M −→ CBw(M) be the mapping defined by T (0) = T

(
1

2

)
= 0 and

T (1) =

{
0,

1

2

}
. By choosing α = 0.5, the definition of ζ gives ζ(r) = 1.
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First, the contraction condition of the theorem is to be proved that is,

ζ(α)W(u1, Tu1) ≤ W(u1, u2)⇒ Hw(Tu1 \ {u1}, Tu2 \ {u2}) ≤ αW(u1, u2)

To prove above condition the following cases are to be considered.

Case 1.

Choose x = 0,

ζ(α)W(0, T (0)) =W(0, 0)

= 0

≤ W(0, u2) for all u1 ∈M

⇒ ζ(α)W(0, T (0)) ≤ W(0, u2).

Now, for u2 = 0

Hw(T (0) \ {0}, T (0) \ {0}) = Hw(φ, φ)

= 0

≤ αW(0, 0)

⇒ Hw(T (0) \ {0}, T (0) \ {0}) ≤ αW(0, 0).

For u2 =
1

2
, we proceed as follows,

Hw

(
T (0) \ {0}, T

(
1

2

)
\
{

1

2

})
= Hw(φ, {0})

= 0

≤ αW
(

0,
1

2

)
⇒ Hw

(
T (0) \ {0}, T

(
1

2

)
\
{

1

2

})
≤ αW

(
0,

1

2

)
.

For u2 = 1,

Hw(T (0) \ {0}, T (1) \ {1}) = Hw

(
φ,

{
0,

1

2

})
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= 0

≤ αW(0, 1)

⇒ Hw(T (0) \ {0}, T (1) \ {1}) ≤ αW(0, 1).

Case 2.

At u1 =
1

2

ζ(α)W
(

1

2
, T

(
1

2

))
=W

(
1

2
, 0

)
=

1

2

≤ W
(

1

2
, u2

)
for all u2 ∈M

∖{1

2

}
⇒ ζ(α)W

(
1

2
, T

(
1

2

))
≤ W

(
1

2
, u2

)
.

Now for u2 = 0, the relation becomes

Hw

(
T

(
1

2

)
\
{

1

2

}
, T (0) \ {0}

)
= Hw({0}, φ)

= 0

≤ αW
(

1

2
, 0

)
⇒ Hw

(
T

(
1

2

)
\
{

1

2

}
, T (0) \ {0}

)
≤ αW

(
1

2
, 0

)
.

If u2 = 1, then

Hw

(
T

(
1

2

)
\
{

1

2

}
, T (1) \ {1}

)
= Hw

(
{0},

{
0,

1

2

})
=

1

4

≤ αW
(

1

2
, 1

)
=

3

8

⇒ Hw

(
T

(
1

2

)
\
{

1

2

}
, T (1) \ {1}

)
≤ αW

(
1

2
, 1

)
.

Case 3.
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At u1 = 1

ζ(α)W(1, T (1)) =W
(

1,
1

2

)
=

3

4

≤ W(1, u2) for all u2 ∈M\{1}

⇒ ζ(α)W(1, T (1)) ≤ W(1, u2).

For u2 = 0, the calculation is given as

Hw(T (1)\{1}, T (0)\{0}) = Hw

({
0,

1

2

}
, φ

)
= 0

≤ αW(1, 0)

Hw(T (1)\{1}, T (0)\{0}) ≤ αW(1, 0).

If u2 =
1

2
, then the relation becomes

Hw

(
T (1) \ {1}, T

(
1

2

)∖{1

2

})
= Hw

({
0,

1

2

}
, {0}

)
=

1

4

≤ αW
(

1,
1

2

)
=

3

8

⇒ Hw

(
T (1) \ {1}, T

(
1

2

)∖{1

2

})
≤ αW

(
1,

1

2

)
.

It is clear from above cases that contraction condition is satisfied. Now, the second

condition given in equation (3.4) is to be inquired that is,
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W(u2, u3) ≤ βHw(Tu2, Tu3),

it will be checked by choosing β = 2 and by discussing following situations for u1

and u2 given below

(i) If u1 = 0 or u1 =
1

2
, then u2 ∈ T (0).

Since T (0) = T
(1

2

)
= {0}

This implies that u2 = 0, then there exists u3 ∈ T (u2) such that

0 =W(u2, u3) ≤ βHw(Tu2, Tu3).

(ii) If u1 = 1, then u2 ∈ T (1).

⇒ u2 ∈ T (1) =

{
0,

1

2

}
,

if u2 = 0 ⇒ u3 = 0 and if u2 =
1

2
, again u3 = 0, so

1

2
=W(u2, u3) = 2Hw

(
T (1), T

(
1

2

))
=

1

2
.

The function T has a fixed point u = 0, since all the conditions of the

theorem are satisfied.



Chapter 4

Weak Partial b-metric Space

endowed with a Suzuki-type

Multivalued Contraction

In 2019, Kanwal et al. [36] presented the concept of weak partial b-metric space.

In this article the authors proved a fixed point result, which is the extension of

Nadler’s theorem. Aydi et al. [35] proved a fixed point result on weak partial

metric space endowed with Suzuki type multivalued contraction. This chapter

provides a fixed point result which is merging the idea of both.

4.1 Some Important Tools for WPbMS

This section is dedicated to some important results and definition, which are nec-

essary for the proof of upcoming fixed point result.

Definition 4.1.1. (Weak Partial b-metric Space) [36]

LetM be a nonempty set, k ≥ 1 and Wb :M×M→ R+ be a function, then for

all %1, %2, %3 ∈M,

(W1) Wb(%1, %1) =Wb(%1, %2) if and only if %1 = %2;

43
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(W2) Wb(%1, %1) ≤ Wb(%1, %2);

(W3) Wb(%1, %2) =Wb(%2, %1);

(W4) Wb(%1, %2) ≤ k{Wb(%1, %3) +Wb(%3, %2)}.

ThenWb is called weak partial b-metric onM. The pair (M,Wb) is called a weak

partial b-metric space.

It is worth to mention here that one can easily define a b-metric space on M by

using weak partial b-metric space. For this purpose, define a function

Ws
b :M×M→ [0,∞)

by

Ws
b (µ, ν) =Wb(µ, ν)− 1

2

[
Wb(µ, µ) +Wb(ν, ν)

]
,

then (Ws
b ,M) is a b-metric space.

Lemma 4.1.1. [36]

Let (M,Wb) be a weak partial b-metric space, and {un} be a sequence inM then,

(a) the sequence {un} is Cauchy sequence in (M,Wb) if and only if this sequence

is Cauchy in the b-metric space (M,Ws
b ),

(b) the weak partial b-metric space (M,Wb) is complete if the b-metric space

(M,Ws
b ) is complete and vice versa,

(c) a sequence {un} in (M,Ws
b ) converge to a point u ∈M if and only if,

lim
n,m→∞

Wb(un, um) = lim
n→∞

Wb(un, u) =Wb(u, u).

Definition 4.1.2. [36]

Let (M,Wb) be a weak partial b-metric space and CBw(M) consists of the family

of all nonempty, bounded and closed subsets of M. One can define the distance

between two sets as
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ψwb(S, T ) = sup{Wb(s, T ) : s ∈ S}, (4.1)

where

Wb(s, T ) = inf{Wb(s, t), t ∈ T}

is the distance between a set and a point.

It is worth mentioning that if Wb(s, T ) = 0 ⇒ Ws
b (s, T ) = 0, where Ws

b (s, T ) =

inf{Ws
b (s, t), t ∈ T}.

Remark 4.1.1. [36]

Let (M,Wb) be a weak partial b-metric space, and let S be a nonempty set inM,

then s ∈ S̄ if and only if

Wb(s, S) =Wb(s, s),

where S̄ denotes the closure of S with respect to weak partial b-metric space Wb.

If S is closed then S̄ = S.

Proposition 4.1.2. [36]

Let (M,Wb) be weak partial b-metric space, then for all S, T, U ∈ CBw(M) and

k ≥ 1

(i) ψwb(S, S) = sup{Wb(s, s) : s ∈ S},

(ii) ψwb(S, S) ≤ ψwb(S, T ),

(iii) ψwb(S, T ) = 0 implies S ⊆ T ,

(iv) ψwb(S, T ) ≤ k{ψwb(S, U) + ψwb(U, T )}.

Definition 4.1.3. [36]

Let (M,Wb) be a weak partial b-metric space. For S, T ∈ CBwb(M), define a

mapping

Hwb : CBwb(M)× CBwb(M) −→ [0,∞),

by

Hwb(S, T ) =
1

2
{ψwb(S, T ) + ψwb(T, S)},
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is called Hwb - type Pompeiu-Hausdorff metric space induced by Wb.

Proposition 4.1.3. [36]

Let (M,Wb) be a weak partial b-metric space. Then, for all S, T, U ∈ CBwb(M),

(1) Hwb(S, S) ≤ Hwb(S, T );

(2) Hwb(S, T ) = Hwb(T, S);

(3) Hwb(S, T ) ≤ k{Hwb(S, U) +Hw(U, T )}.

Proof.

(1) Consider (ii) from Proposition 4.1

ψwb(S, S) ≤ ψwb(S, T ),

also Hwb(S, S) = ψwb(S, S) and Hwb(S, T ) ≤ Hwb(S, T ), this implies that

Hwb(S, S) = ψwb(S, S) ≤ ψwb(S, T ) ≤ Hwb(S, T ). Hence,

Hwb(S, S) ≤ Hwb(S, T ).

(2) Obvious from definition.

(3) Consider Hwb - type Pompeiu-Hausdorff metric space

Hwb(S, T ) =
1

2
{ψwb(S, T ) + ψwb(T, S)},

using (iv) from Proposition 4.1 in above equation, it becomes

Hwb(S, T ) ≤ 1

2
[k{ψwb(S, U) + ψwb(U, T )}+ k{ψwb(T, U) + ψwb(U, S)}]

= k

[
1

2
{ψwb(S, U) + ψwb(U, S}+

1

2
{ψwb(U, T ) + ψwb(T, U)}

]
= k[Hwb(S, U) +Hwb(U, T )].
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Theorem 4.1.4.

Let (M,Wb) be a complete weak partial b-metric space with Wb a continuous

function, and let T : M −→ CBwb(M) be a multivalued mapping. Consider

ζ : [0, 1) −→ (0, 1] as a nonincreasing function as defined in (3.2).

Further assume that for α ∈ [0, 1), T satisfies the following

ζ(α)Wb(u1, Tu1) ≤ Wb(u1, u2)⇒ Hwb(Tu1 \ {u1}, Tu2 \ {u2}) ≤ kαWb(u1, u2)

(4.2)

for all u1, u2 ∈M. Suppose also that, for all u1 in M, and u2 in Tu1, and β > 1,

there exist u3 in Tu2 such that

Wb(u2, u3) ≤ βHwb(Tu2, Tu3), (4.3)

then there is a fixed point of T .

Proof.

Let α1 ∈ (0, 1) be such that 0 ≤ α ≤ α1 < 1 and v0 ∈M.

Since Tv0 is nonempty, it is clear that if v0 ∈ Tv0, then there is nothing to prove,

as T has a fixed point.

Let v0 6∈ Tv0.

Then there exists v1 ∈ Tv0, such that v1 6= v0.

Further for v1 6∈ Tv1, there exist v2 ∈ Tv1, such that v2 6= v1.

As

0 ≤ α ≤ α1 < 1,

so
1
√
α1

> 1,

now using the condition assumed in (4.3), that is

Wb(v1, v2) ≤
1
√
α1

Hwb(Tv0, T v1), (4.4)
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since,

ζ(r)Wb(v1, T v1) ≤ Wb(v1, T v1) and Wb(v1, T v1) ≤ Wb(v1, v2),

so we have,

ζ(r)Wb(v1, T v1) ≤ Wb(v1, T v1) ≤ Wb(v1, v2),

⇒ ζ(r)Wb(v1, T v1) ≤ Wb(v1, v2),

now from (4.2) it follows that,

Hwb(Tv0 \ {v0}, T v1 \ {v1}) ≤ αWb(v1, v2),

and from (4.3) we have,

Wb(v1, v2) ≤
1
√
α1

Hwb(Tv0, T v1),

ultimately the relation becomes,

Wb(v1, v2) ≤
1
√
α1

Hwb(Tv0, T v1) ≤
1
√
α1

Hwb(Tv0 \ {v0}, T v1 \ {v1})

≤ 1
√
α1

.α.Wb(v0, v1) ≤
√
α1.Wb(v0, v1).

Furthermore,

Wb(v2, v3) ≤
1
√
α1

Hwb(Tv1, T v2) ≤
1
√
α1

Hwb(Tv1 \ {v1}, T v2 \ {v2})

≤ 1
√
α1

.α.Wb(v1, v2) ≤
√
α1.Wb(v1, v2)

≤
√
α1 [
√
α1.Wb(v0, v1)]

⇒Wb(v2, v3) ≤ (
√
α1)

2.Wb(v0, v1),

continuing in this way n times, we have

Wb(vn, vn+1) ≤
1
√
α1

Hwb(Tvn−1, T vn) ≤ 1
√
α1

Hwb(Tvn−1 \ {vn−1}, T vn \ {vn})



WPbMS endowed with a Suzuki-type Multivalued Contraction 49

≤ 1
√
α1

.α.Wb(vn−1, vn) ≤
√
α1.Wb(vn−1, vn)

≤
√
α1

[
(
√
α1)

n−1.Wb(v0, v1)
]

≤ (
√
α1)

n.Wb(v0, v1)

⇒Wb(vn, vn+1) ≤ (
√
α1)

n.Wb(v0, v1). (4.5)

Hence,

lim
n→∞

Wb(vn, vn+1) = 0 (4.6)

Now it is to be proved that {vn} is a Cauchy sequence in (M,Ws
b ). Suppose

m > n,

Ws
b (vn, vn+m) =Wb(vn, vn+m)− 1

2
[Wb(vn, vn) +Wb(vn+m, vn+m)]

≤ Wb(vn, vn+m)

≤ k{Wb(vn, vn+1) +Wb(vn+1, vn+m)}

≤ k{Wb(vn, vn+1) + k{Wb(vn+1, vn+2)

+Wb(vn+2, vn+m)}}

= kWb(vn, vn+1) + k2Wb(vn+1, vn+2)

+ k2W(vn+2, vn+m),

continuing in this way, we get

≤ kWb(vn, vn+1) + k2Wb(vn+1, vn+2)

+ k3Wb(vn+2, vn+3) + ...

+ km+nWb(vn+m−1, vn+m)

≤ [k(
√
α1)

n + k2(
√
α1)

n+1) + k3(
√
α1)

n+2) + ...

+ km((
√
α1)

n+m−1)]Wb(v0, v1)

≤ k(
√
α1)

n[1 + k(
√
α1) + k2(

√
α1)

2) + ...

+ km−1((
√
α1)

m−1) + km−2((
√
α1)

m−2) + ...]Wb(v0, v1)
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≤ k(
√
α1)

n 1

1−√α1

Wb(v0, v1) where k
√
α1 < 1

So we have

lim
n→∞

Ws
b (vn, vn+m) = 0. (4.7)

Hence it is clear that {vn} is a Cauchy sequence in (M,Ws
b ). So there exists a

p ∈M such that

lim
n→∞

Wb(vn, p) = lim
n,m→∞

Wb(vn, (vm) =Wb(p, p). (4.8)

Since Wb is a weak partial b-metric space therefore,

Wb(vn, vn) ≤ Wb(vn, vn+1) and Wb(vn+1, vn+1) 6Wb(vn, vn+1)

⇒ 1

2
[Wb(vn, vn) +Wb(vn+1, vn+1)] ≤ Wb(vn, vn+1). (4.9)

lim
n→∞

Wb(vn, vn) = lim
n→∞

Wb(vn+1, vn+1) = lim
n→∞

Wb(vn, vn+1) = 0 (from (4.6))

(4.10)

since ,

lim
n→∞

Ws
b (vn, vn+m) = lim

n→∞
Wb(vn, vn+m)− 1

2
lim
n→∞

[Wb(vn, vn) +Wb(vn+m, vn+m)].

But from (3.7)

lim
n→∞

Ws
b (vn, vn+m) = 0,

using values from (3.10),

⇒ lim
n→∞

Ws
b (vn, vn+m) = 0 = lim

n→∞
W(vn, vn+m). (4.11)

Hence,

lim
n→∞

Wb(vn, vn+m) = 0 = lim
n→∞

Wb(vn, p) = lim
n→∞

Wb(p, p). (4.12)

To show

Wb(p, Tu1) ≤ 2kαWb(p, u1) for all u1 ∈M \ {p} where, kα < 1. (4.13)
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We proceed as follows:

Since lim
n→∞

Wb(vn, p) = 0 therefore, there exists n ≥ N such that

Wb(vn, p) ≤
1

3k
Wb(u1, p), (4.14)

and

ζ(α)Wb(vn, T vn) ≤ Wb(vn, T vn)

≤ Wb(vn, vn+1)

≤ k{Wb(vn, p) +Wb(p, vn+1)}

Using (4.13),

Wb(vn, p) ≤
1

3k
Wb(u1, p) and Wb(p, u1) ≤

1

3k
Wb(u1, p),

≤ k
{ 1

3k
Wb(p, u1) +

1

3k
Wb(p, u1)

}
≤ Wb(u1, p)−

1

3
Wb(u1, p),

≤ Wb(u1, p)− kWb(p, vn) from (4.14)

consider

Wb(p, u1) ≤ k{Wb(p, vn) +Wb(vn, u1)}

= k{Wb(p, vn) +Wb(u1, vn)}

⇒ Wb(p, u1)− kWb(p, vn) ≤ kWb(u1, vn),

using above value the inequality becomes,

ζ(α)Wb(vn, T vn) ≤ kWb(u1, vn)

⇒ Hwb(Tvn, Tu1) ≤ kαWb(vn, u1). (4.15)
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Since,

Hwb(Tvn, Tu1) =
1

2
{ψwb(Tvn, Tu1) + ψwb(Tu1, T vn)}

⇒ 2Hwb(Tvn, Tu1) = ψwb(Tvn, Tu1) + ψwb(Tu1, T vn)

⇒ 2Hwb(Tvn, Tu1) ≥ ψwb(Tvn, Tu1). (4.16)

Since vn+1 ∈ Tvn, now using the definition of distance between two sets and the

distance between a set and a point,

Wb(vn+1, Tu1) ≤ ψwb(Tvn, Tu1)

⇒Wb(vn+1, Tu1) ≤ 2Hwb(Tvn, Tu1) (from (4.16)) (4.17)

Wb(vn+1, Tu1) ≤ 2kαWb(vn, u1)

Wb(vn+1, Tu1) ≤ 2kα{Wb(vn, p) +Wb(p, u1)}

lim
n→∞

Wb(vn+1, Tu1) ≤ 2kαWb(p, u1). (4.18)

Consider,

Wb(vn+1, Tu1) ≤ k{Wb(vn+1, p) +Wb(p, Tu1)}

lim
n→∞

Wb(vn+1, Tu1) ≤ kWb(p, Tu1)

⇒ k ≥ lim
n→∞

Wb(vn+1, Tu1)

Wb(p, Tu1)
(4.19)

again,

Wb(vn+1, Tu1) ≤ k{Wb(vn+1, vn) +Wb(vn, Tu1)}

≤ kWb(vn+1, vn) + k2Wb(vn, p) + k2Wb(p, Tu1)

⇒ lim
n→∞

Wb(vn+1, Tu1) ≤ k2Wb(p, Tu1) (4.20)

lim
n→∞

Wb(vn+1, Tu1) ≤ lim
n→∞

[
Wb(vn+1, Tu1)

Wb(p, Tu1)

]2
Wb(p, Tu1) (from (4.19))

⇒Wb(p, Tu1) ≤ lim
n→∞

Wb(vn+1, Tu1) (4.21)

(4.18) and (4.21) gives,
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Wb(p, Tu1) ≤ 2kαWb(p, u1) for all u1 ∈M \ {p} andkα < 1. (4.22)

Now claim that,

Hwb(Tu1, Tp) ≤ kαWb(p, u1) for all u1 ∈ Wb.

Above statement clearly hold for u1 = p.

Assume that u1 6= p, then for every m ∈ N, there will be a zm ∈ Tu1 such that

Wb(p, zm) ≤ Wb(p, Tu1) +
1

m
Wb(p, u1). (4.23)

Now consider,

Wb(u1, Tu1) ≤ Wb(u1, zm)

≤ k{Wb(u1, p) +Wb(p, zm)}

≤ k{Wb(u1, p) +Wb(p, Tu1) +
1

m
Wb(u1, p)}

Wb(u1, Tu1) ≤ k
[
Wb(u1, p) + 2kαWb(p, u1)

+
1

m
Wb(u1, p)

]
(from (4.22) and (4.24))

=
[
1 + 2kα +

1

m

]
Wb(u1, p)

⇒ Wb(u1, Tu1)[
1 + 2kα +

1

m

] ≤ Wb(p, u1).

⇒ Hwb(Tu1, Tp) ≤ kαWb(p, u1) for all u1 ∈ Wb and kα < 1.

Finally

Wb(p, Tp) = lim
n→∞

Wb(vn+1, Tp)

≤ lim
n→∞

ψwb(Tvn, Tp)
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≤ 2 lim
n→∞

Hwb(Tvn, Tp)

≤ 2α lim
n→∞

Wb(vn, p) = 0.

From above calculation it is clear that Wb(p, Tp) = 0 =Wb(p, Tp).

Since Tp is closed, p ∈ Tp = Tp.

Example 4.1.1.

Let M = {0, 1

2
, 1}. The weak partial b-metric space Wb : M×M −→ [0,∞) is

defined by

Wb(u1, u2) =
1

2

∣∣u1 − u2∣∣2 +
1

2
max {u1, u2} .

Then Wb(0, 0) = 0,

Wb

(
1

2
,
1

2

)
=

1

4
,Wb(1, 1) =

1

2
,

Wb

(
0,

1

2

)
=Wb

(
1

2
, 0

)
=

3

8
,

Wb

(
1

2
, 1

)
=Wb

(
1,

1

2

)
=

5

8

and Wb(1, 0) =Wb(0, 1) = 1.

It can easily be seen that (M,Wb) is weak partial b-metric space with k = 2.

Let T :M−→ CBwb(M) be the mapping defined by T (0) = {0},

T

(
1

2

)
=

{
0,

1

2

}
and T (1) =

{
0,

1

2
, 1

}
.

By choosing α = 0.5, the definition of ζ that is (3.2) gives ζ(α) = 1.

First, the contraction condition of the theorem is to be proved that is,

ζ(α)Wb(u1, Tu1) ≤ Wb(u1, u2)⇒ Hwb(Tu1 \ {u1}, Tu2 \ {u2}) ≤ kαW(u1, u2)

To prove above condition the following cases are to be considered.

Case 1.

Choose x = 0,

ζ(α)Wb(0, T (0)) =Wb(0, 0)
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= 0

≤ Wb(0, u2) for all u1 ∈M

⇒ ζ(α)Wb(0, T (0)) ≤ Wb(0, u2).

Now, for u2 = 0

Hwb(T (0) \ {0}, T (0) \ {0}) = Hwb(φ, φ)

= 0

≤ αWb(0, 0)

⇒ Hwb(T (0) \ {0}, T (0) \ {0}) ≤ kαWb(0, 0).

For u2 =
1

2

Hwb

(
T (0) \ {0}, T

(
1

2

)
\
{

1

2

})
= Hwb(φ, {0})

= 0

≤ αWb

(
0,

1

2

)
⇒ Hwb

(
T (0) \ {0}, T

(
1

2

)
\
{

1

2

})
≤ kαWb

(
0,

1

2

)
.

For u2 = 1

Hwb(T (0) \ {0}, T (1) \ {1}) = Hwb

(
φ,

{
0,

1

2

})
= 0

≤ αWb(0, 1)

⇒ Hwb(T (0) \ {0}, T (1) \ {1}) ≤ kαWb(0, 1).

Case 2.

The three possibilities can be discussed as

At u1 =
1

2
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ζ(α)Wb

(
1

2
, T

(
1

2

))
=Wb

(
1

2
,

{
0,

1

2

})
= inf

{
Wb

(
3

8
,
1

4

)}
=

1

4

≤ Wb

(
1

2
, u2

)
for all u2 ∈M

∖{1

2

}
⇒ ζ(α)Wb

(
1

2
, T

(
1

2

))
≤ Wb

(
1

2
, u2

)
.

Now for u2 = 0, the relation becomes

Hwb

(
T

(
1

2

)
\
{

1

2

}
, T (0) \ {0}

)
= Hwb({0}, φ)

= 0

≤ kαWb

(
1

2
, 0

)
⇒ Hwb

(
T

(
1

2

)
\ {1

2
}, T (0) \ {0}

)
≤ kαWb

(
1

2
, 0

)
.

If u2 = 1, then

Hwb

(
T

(
1

2

)
\
{

1

2

}
, T (1) \ {1}

)
= Hwb

(
{0},

{
0,

1

2

})
=

3

16

≤ kαWb

(
1

2
, 1

)
⇒ Hwb

(
T

(
1

2

)
\
{

1

2

}
, T (1) \ {1}

)
≤ kαWb

(
1

2
, 1

)
.

Case 3.

At u1 = 1

ζ(α)Wb(1, T (1)) =Wb

(
1,

{
0,

1

2
, 1

})
=Wb(1, 1)
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=
1

2

≤ Wb(1, u2) for all u2 ∈M\{1}

⇒ ζ(α)Wb(1, T (1)) ≤ Wb(1, u2).

For u2 = 0

Hwb(T (1)\{1}, T (0)\{0}) = Hwb

({
0,

1

2
, 1

}
, φ

)
= 0

≤ kαW(1, 0)

Hwb(T (1)\{1}, T (0)\{0}) ≤ kαW(1, 0).

If u2 =
1

2

Hwb

(
T (1) \ {1}, T

(
1

2

)∖{1

2

})
= Hwb

({
0,

1

2

}
, {0}

)
=

3

16

≤ kαWb

(
1,

1

2

)
⇒ Hwb

(
T (1) \ {1}, T

(
1

2

)∖{1

2

})
≤ kαWb

(
1,

1

2

)
.

It is clear from above cases that contraction condition is satisfied. Now, the second

condition given in equation (3.4) is to be inquired that is,

Wb(u2, u3) ≤ βHwb(Tu2, Tu3),

it will be checked by choosing β = 2 and by discussing following situations for u1

and u2 given below

(i) If u1 = 0, then u2 ∈ T (0).

Since T (0) = {0}

This implies that u2 = 0, then there exists u3 ∈ T (u2) such that
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0 =Wb(u2, u3) ≤ 2Hw(Tu2, Tu3).

If u1 =
1

2
, then u2 ∈ T

(
1

2

)
.

Since T

(
1

2

)
=

{
0,

1

2

}
This implies that for u2 = 0, then there exists u3 ∈ T (u2) such that

0 =W(u2, u3) ≤ 2Hwb(Tu2, Tu3),

also, for u2 =
1

2
, there exists u3 ∈ T (u2) that is T

(
1

2

)
=

{
0,

1

2

}
.

For u3 = 0

3

8
=Wb

(
1

2
, 0

)
≤ 2Hwb

(
T

(
1

2

)
, T (0)

)
= 2

(
3

8

)
=

3

4

For u3 =
1

2

1

4
=Wb

(
1

2
,
1

2

)
≤ 2Hwb

(
T

(
1

2

)
, T

(
1

2

))
= 2

(
1

4

)
=

1

2

⇒Wb

(
1

2
,
1

2

)
≤ 2Hwb

(
T

(
1

2

)
, T

(
1

2

))

(ii) If u1 = 1, then u2 ∈ T (1).

⇒ u2 ∈ T (1) =

{
0,

1

2
, 1

}
,

if u2 = 0 ⇒ u3 = 0,

the result holds for this situation.

If u2 =
1

2
,

then for u3 = 0, the relation holds.

For u2 =
1

2
= u3
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Wb

(
1

2
,
1

2

)
=

1

4

≤ 2Hwb

(
T

(
1

2

)
, T

(
1

2

))
=

1

2

⇒Wb

(
1

2
,
1

2

)
≤ 2Hwb

(
T

(
1

2

)
, T

(
1

2

))

Now, for u2 =
1

2
and u3 = 1

Wb

(
1

2
, 1

)
=

5

8

5

8
=Wb

(
1

2
, 1

)
≤ 2Hwb

(
T (1), T

(
1

2

))
=

7

8

From the above discussion it is clear that all the conditions of Theorem (4.1)

are satisfied. So, T has fixed points.



Chapter 5

Conclusion

The dissertation is brought to end as follows:

• Some abstract spaces such as metric space, b-metric space and partial metric

space are elaborated in the beginning of the dissertation. These elaborations are

necessary for the further discussions.

• Some important land marks of the fixed point theory are discussed in systematic

manner. To achieve the goal of better understanding a few important results are

provided without proof.

• The platform of weak partial metric space is used for this research. Aydi et al.

introduced a Suzuki-type multivalued contraction on weak partial metric spaces

and provided a fixed point result. The detailed review of the article has been

presented in this thesis. The article provides a fixed point theorem established on

Hw-type Hausdorff metric space in the context of Suzuki-type multivalued con-

traction.

• Having inspiration from the paper of Kanwal et al., the result of Aydi et al. is

extended on weak partial b-metric spaces over a Suzuki-type multivalued contrac-

tion. This result is validated by an example.

• In future one can provide

(i) the application of the result.

(ii) this result can further be extended by using the idea of extended b-metric

spaces.
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